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1 mlegp: an overview

Gaussian processes (GPs) are commonly used as surrogate statistical models for predicting out-
put of computer experiments (Santner et al., 2003). Generally, GPs are both interpolators and
smoothers of data and are e�ective predictors when the response surface of interest is a smooth
function of the parameter space. The package mlegp �nds maximum likelihood estimates of
Gaussian processes for univariate and multi-dimensional responses, for Gaussian processes with
Gaussian correlation structures; constant or linear regression mean functions; and for responses
with either constant or non-constant variance that can be speci�ed exactly or up to a multiplica-
tive constant. Unlike traditional GP models, GP models implemented in mlegp are appropriate
for modelling heteroscedastic responses where variance is known or accurately estimated. Diag-
nostic plotting functions, and the sensitivity analysis tools of Functional Analysis of Variance
(FANOVA) decomposition, and plotting of main and two-way factor interaction e�ects are imple-
mented*. Multi-dimensional output can be modelled by �tting independent GPs to each dimension
of output, or to the most important principle component weights following singular value decom-
position of the output. Plotting of main e�ects for functional output is also implemented. From
within R, a complete list of functions and vignettes can be obtained by calling `library(help =
�mlegp")'.

*Sensitivity analysis functions are currently only available in the full version of mlegp, which is
available from http://users.nsula.edu/dancikg/mlegp.

2 Gaussian process modeling and diagnostics

2.1 Gaussian processes

Let zknown =
[
z(θ(1)), . . . , z(θ(m))

]
be a vector of observed responses, where z(θ(i)) is the response

at the input vector θ(i) =
[
θ
(i)
1 , . . . , θ

(i)
p

]
, and we are interested in predicting output z(θ(new)) at

the untried input θ(new). The correlation between any two unobserved responses is assumed to
have the form

C(β)i,t ≡ cor
(
z(θ(i)), z(θ(t))

)
= exp

{
p∑

k=1

(
−βk

(
θ
(i)
k − θ

(t)
k

)2
)}

. (1)

The correlation matrix C(β) = [C(β)]i,t, and depends on the correlation parameters β = [β1, . . . , βp]
Let µ(·) be the mean function for the unconditional mean of any observation, and the mean

matrix of zknown be

M ≡
[
µ
(
θ(1)

)
, . . . , µ

(
θ(m)

)]
. (2)
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The vector of observed responses, zknown, is distributed according to

zknown ∼ MVN
m
(M,V ), (3)

where V is the variance-covariance matrix de�ned as

V ≡ σ2
GPC(β) +N, (4)

where σ2
GP is the unconditional variance of an expected response and N is a diagonal nugget

matrix with the ith diagonal element equal to σ2
e (θ

(i)), which is variance due to the stochasticity
of the response (e.g., random noise) that may depend on θ. If output is deterministic, the nugget
is not present so that σ2

e (θ) ≡ 0. For stochastic responses, variance is traditionally taken to be
constant so that σ2

e (θ) ≡ σ2
e and N = σ2

eI. The package mlegp extends the traditional GP model
by allowing the user to specify N exactly or N up to a multiplicative constant.

De�ne ri = cor(z(θ(new)), z(θ(i))), following equation (1), and r = [r1, . . . , rm]
′
. Under the GP

assumption, the predictive distribution of z(θ(new)) is normal with mean

ẑ
(
θ(i)

)
= E[z(θ(new))|zknown] = µ(θ(new)) + σ2

GP r
′V −1(zknown −M) (5)

and variance
Var[z(θ(new))|zknown] = σ2

GP + σ2
e (θ)− σ4

GP r
′V −1r. (6)

For more details, see Santner et al. (2003).

2.2 Maximum likelihood estimation

We �rst need some additional notation. Mean functions that are constant or linear in design
parameters have the form µ(θ) = x(θ)F , where x(θ) is a row vector of regression parameters, and
F is a column vector of regression coe�cients. Note that for a constant mean function, x(·) ≡
1 and F is a single value corresponding to the constant mean. The mean matrix M de�ned in
equation (2) has the form M = XF , where the ith row of X is equal to x

(
θ(i)

)
.

Let us also rewrite the variance-covariance matrix V from equation (4) to be

V ≡ σ2
GP(C(β) + aNs) ≡ σ2

GPW (β, a), (7)

where Ns is the nugget matrix speci�ed up to a multiplicative constant, with N = σ2
GPaNs and the

matrix W depends on the correlation parameters β = [β1, . . . , βp] and a proportionality constant
a.

When the matrix W is fully speci�ed, maximum likelihood estimates of the mean regression
parameters and σ2

GP exist in closed form and are

F̂ = (XTW−1X)−1XTW−1zknown (8)

and

σ̂2
GP =

1

m
(zknown − M̂)TW−1(zknown − M̂), (9)

where M̂ = XF̂ .

2.3 Diagnostics

The cross-validated prediction ẑ-i(θ
(i)) is the predicted response obtained using equation (5) after

removing all responses at input vector θ(i) from zknown to produce zknown,-i. Note that it is possible
for multiple θ(i)'s, for various i's, to be identical, in which case all corresponding observations are
removed. The cross-validated residual for this observations is

z(θ(i))− z-i(θ
(i))√

Var(z(θ(i))|zknown,-i)
. (10)
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2.4 What does mlegp do?

The package mlegp extends the standard GP model of (3), which assumes that N = σ2
eI, by

allowing the user to specify the diagonal nugget matrix N exactly or up to a multiplicative con-
stant (i.e., Ns). This extension provides some �exibility for modeling heteroscedastic responses.
The user also has the option of �tting a GP with a constant mean (i.e., µ(θ) ≡ µ0 ) or mean
functions that are linear regression functions in all elements of θ (plus an intercept term). For
multi-dimensional output, the user has the option of �tting independent GPs to each dimension
(i.e., each type of observation), or to the most important principle component weights following
singular value decomposition. The latter is ideal for data rich situations, such as functional out-
put, and is explained further in Section (5). GP accuracy is analyzed through diagnostic plots
of cross-validated predictions and cross-validated residuals, which were described in Section (2.3).
Sensitivity analysis tools including FANOVA decomposition, and plotting of main and two-way
factor interactions are described in Section (4).

The package mlegp employs two general approaches to GP �tting. In the standard approach,
mlegp uses numerical methods in conjunction with equations (8) and (9) to �nd maximum like-
lihood estimates (MLEs) of all GP parameters. However, when replicate runs are available, it is
usually more accurate and computationallly more e�cient to �t a GP to a collection of sample

means while using a plug-in estimate for the nugget (matrix).
Let zij ≡ zj

(
θ(i)

)
be the jth replicate output from the computer model evaluated at the input

vector θ(i), i = 1, . . . k, j = 1, . . . ni, so that the computer model is evaluated ni times at the input
vector θ(i). Let z = (z1., . . . zk.) be a collection of k sample mean computer model outputs, where

zi. =
1

ni

ni∑
j=1

zij

is the sample mean output when the computer model is evaluated at θ.
The GP model of z is similar to the GP model of zknown described above, with the (i, t)th

element of the matrix C(β) given by cor(zi., zt.), following Eq. (1). and the ith element of

the nugget matrix N given by
σ2
e (θ)

ni
. The covariance matrix V has the same form as Eq. (4).

Predicted means and variances have the same form as Eqs. (5 - 6), but with the vector zknown
replaced by z. For a �xed nugget term or nugget matrix, the package mlegp can �t a GP to a set
of sample means by using numerical methods in combination with Eq. (8) to �nd the MLE of all
remaining GP parameters. The user may specify a value for the constant nugget or nugget matrix
to use. Alternatively, if replicate runs are available and a nugget term is not speci�ed, mlegp will
automatically take N = σ2

eI and estimate the nugget as

σ̂2
e =

1

N − k

k∑
i=1

(ni − 1)s2i ,

where, s2i is the sample variance for design point i and N =
∑k

i=1 ni. This estimate is the best
linear unbiased estimate (BLUE) of σ2

e (which is linear in s2i ).
The above means approach is computationally more e�cient when replicate runs are available.

If the nugget term or nugget matrix is well known or can be accurately estimated, the means

approach is also more accurate than the standard approach.

3 Examples: Gaussian process �tting and diagnostics

3.1 A simple example

The function mlegp is used to �t one or more Gaussian processes (GPs) to a vector or matrix of
responses observed under the same set of inputs. Data can be input from within R or read from
a text �le using the command read.table (type `?read.table' from within R for more information).
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The example below shows how to �t multiple GPs to multiple outputs z1 and z2 for the design
matrix x. Diagnostic plots are obtained using the plot function, which graphs observed values vs.
cross-validated predicted values for each GP. The plot obtained from the code below appears in
Figure (1).

> x = -5:5

> z1 = 10 - 5*x + rnorm(length(x))

> z2 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1,z2))

> plot(fitMulti)
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Figure 1: Gaussian process diagnostic plots. Open circles, cross-validated predictions; solid black
lines, observed values; solid red lines, con�dence bands corresponding to cross-validated predictions
± standard deviation.

After the GPs are �t, simply typing the name of the object (e.g., fitMulti) will return basic
summary information.

> fitMulti

num GPs: 2

Total observations (per GP): 11

Dimensions: 1
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We can also access individual Gaussian processes by specifying the index. The code below, for ex-
amples, displays summary information for the �rst Gaussian process, including diagnostic statistics
of cross-validated root mean squared error (CV RMSE) and cross-validated root max squared error
(CV RMaxSE), where squared error corresponds to the squared di�erence between cross-validated
predictions and observed values.

> fitMulti[[1]]

Total observations = 11

Dimensions = 1

mu = 12.69883

sig2: 203.2855

nugget: 0

Correlation parameters:

beta a

1 0.2245179 2

Log likelihood = -34.89685

CV RMSE: 3.001234

CV RMaxSE: 61.10262

3.2 An example with replicate observations

When replicate observations are available, and the nugget term (or matrix) is known or can be
accurately estimated, it is computationally more e�cient and more accurate to use a plug-in
estimate for the nugget term (or matrix) and to �t a GP to a set of sample means. This is done
by setting `nugget.known = 1' in the call to mlegp, while still passing in a vector or matrix of
all observations. A nugget value can be speci�ed exactly by setting the `nugget' argument to the
(estimated) value of σ2

e as in the code below.

> x = c(1:10, 1:10, 1:10)

> y = x + rnorm(length(x), sd = 1)

> fit = mlegp(x,y, nugget = 1, nugget.known = 1)

If the argument `nugget' is not speci�ed, a weighted average of sample variances will be used.

> fit = mlegp(x,y, nugget.known = 1)

> fit$nugget

[1] 0.9606866

3.3 Heteroscedastic responses and the nugget matrix

In cases where the responses are heteroscedastic (have non-constant variance), it is possible to
specify the diagonal nugget matrix exactly or up to a multiplicative constant. Currently, we rec-
ommend specifying the nugget matrix based on sample variances for replicate design points (which
is easily obtained using the function varPerReps), based on the results of a separate statistical
model, or based on prior information.

In the example below, we demonstrate how to �t a GP with a constant nugget term, a GP
where the diagonal nugget matrix is speci�ed up to a multiplicative constant, and a GP where the
diagonal nugget matrix is speci�ed exactly. First we generate heteroscedastic data, with variance
related to the design parameter.
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> x = seq(0,1,length.out=20)

> z = x + rnorm(length(x), sd = 0.10*x) # variance is not constant

By default, a nugget term is automatically estimated if there are replicates in the design matrix,
and is not estimated otherwise. However, one can estimate a nugget term by specifying an initial
scalar value for the `nugget' argument during the call to mlegp. This is done in the code below.

> fit1 = mlegp(x,z, nugget = mean((0.1*x)**2))

Alternatively, one can set `nugget' equal Ns, which speci�es the nugget matrix up to a multiplica-
tive constant, and is demonstrated in the code below.

> fit2 = mlegp(x,z, nugget = (.1*x)**2)

Finally, we completely and exactly specify the diagonal nugget matrixN by also setting `nugget.known
= 1'.

> fit3 = mlegp(x,z, nugget.known = 1, nugget = (.1*x)**2)

We demonstrate the advantage of using a non-constant nugget term by comparing the root mean
squared error (RMSE) between the true response and predictions from each �tted GP. Importantly,
predictions are less accurate (have higher root mean squared errors) and can have far from nominal
coverage probabilities when a constant nugget is incorrectly assumed.

> sqrt(mean((x-predict(fit1))**2))

[1] 0.01113543

> sqrt(mean((x-predict(fit2))**2))

[1] 0.003948504

> sqrt(mean((x-predict(fit3))**2))

[1] 0.003899735

4 Sensitivity analysis

For a response y = f(x), where x can be multidimensional, sensitivity analysis (SA) is used to
(a) quantify the extent in which uncertainty in the response y can be attributed to uncertainty
in the design parameters x, and (b) characterize how the response changes as one or more design
parameters are varied. General SA methods can be found in Saltelli et al. (2000). SA using
Gaussian process models, which is described in Schonlau and Welch (2006), is implemented in the
full version of mlegp, which is available from http://users.nsula.edu/dancikg/mlegp.

5 Multivariate Output and Dimension Reduction

5.1 Background

For multivariate or functional output, singular value decomposition can be used to reduce the
dimensionality of the response (Heitmann et al., 2006). Let [z]i,j , i = 1, . . . , k, j = 1, . . . , m be
a matrix of m multivariate responses, where column j of the matrix contains the k-dimensional
output of the response corresponding to the input parameter θ(j). Also let r = min(k,m). Using
singular value decomposition,

[z]i,j = [UkxrDrxrV
′
rxm]i,j =

r∑
p=1

λp {αp}i {wp(θ)}j , (11)

6



where λp is the pth singluar value, αp is the pth column of U , and wp(θ) is the pth row of V ′.
We will refer to the jth column of V ′, which contains the elements {wp(θ)}j , p = 1, . . . , r, as
a vector of principle component weights corresponding to the jth observation. The output z is
approximated by keeping the l < r most important principle component weights, corresponding
to the l largest singular values. For a response matrix z as described above, mlegp �ts independent
Gaussian processes to the most important principle component weights. The number of principle
component weights to be kept is speci�ed through the argument `PC.num'; alternatively, setting
the argument `PC.percent' will keep the most important principle component weights that account
for `PC.percent' of the variation in the response.

5.2 Examples

5.2.1 Basics: Modeling functional output

The �rst example demonstrates the use of mlegp to �t GPs to principle component weights in order
to model functional output. The functional responses are sinusoidal, consisting of 161 points, with
a vertical o�set determined by the design parameter p. We �rst create the functional responses
and plot them. This output is displayed in Figure (2).

> x = seq(-4,4,by=.05)

> p = 1:10

> y = matrix(0,length(p), length(x))

> for (i in 1:length(p)) {

+ y[i,] = sin(x) + .2*i + rnorm(length(x), sd = .01)

+ }

For functional output such as this, it is possible to �t separate GPs to each dimension. How-
ever, with 161 dimensions, this is not reasonable. In the code below, we �rst use the function
singularValueImportance and see that the two most important principle component weights ex-
plain more than 99.99% of the variation in the response. Then, we �t the GPs to these two
principle component weights. Note that in the call to mlegp we take the transpose of the response
matrix, so that columns correspond to the functional responses.

> numPCs = 2

> singularValueImportance(t(y))[numPCs]

[1] 99.99614

> fitPC = mlegp(p, t(y), PC.num = numPCs)

The GPs, which model principle component weights, can now be used to predict and analyze the
functional response, based on the UDV ′ matrix of equation (11). The UD matrix corresponding to
the principle component weights that are kept is saved as a component of the Gaussian process list
object. The R code below demonstrates use of the predict method to reconstruct (approximately)
the original functional output.

> ## reconstruct the output Y = UDV'

> Vprime = matrix(0,numPCs,length(p))

> Vprime[1,] = predict(fitPC[[1]])

> Vprime[2,] = predict(fitPC[[2]])

> predY = fitPC$UD %*% Vprime
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Figure 2: An example of functional responses where the design parameter determines the vertical
o�set
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